Headline: Taking globally consistent health impact projections to the next level

Despite intensive research activity within the area of climate change, substantial knowledge gaps still remain regarding the potential future impacts of climate change on human health. A key shortcoming in the scientific understanding of these impacts is the lack of studies that are conducted in a coordinated and consistent fashion, producing directly comparable outputs. This Viewpoint discusses and exemplifies a bottom-up initiative generating new research evidence in a more coordinated and consistent way compared with previous efforts. It describes one of the largest model comparisons of projected health impacts due to climate change, so far. Yet, the included studies constitute only a selection of health impacts in a variety of geographical locations, and are therefore not a comprehensive assessment of all possible impact pathways and potential consequences. The new findings of these studies shed light on the complex and multidirectional impacts of climate change on health, where impacts can be both adverse or beneficial. However, the adverse impacts dominate overall, especially in the scenarios with more greenhouse gas forcing. Overall, the future population at risk of disease and incidence rates are predicted to increase substantially, but in a highly location-specific and disease-specific fashion. Greenhouse gas emission mitigation can substantially reduce risk and resultant morbidity and mortality. The potential positive impact of adaptation has not been included in the models applied, and thus remains a major source of uncertainty. This bottom-up initiative lays out a research strategy that brings more meaningful research outputs and calls for greater coordination of research initiatives across the health community.

Publication Year
Publication Type
Academic Articles

Rocklöv, J., Huber, V., Bowen, K., & Paul, R. (2021). Taking globally consistent health impact projections to the next level. The lancet. Planetary health, 5(7), e487-e493. doi:10.1016/S2542-5196(21)00171-6.

Staff involved