MgB₂ ten years after: present state and perspectives for superconducting wires

Giovanni Grasso

May 13th, 2011

Columbus Superconductors SpA

 Established in 2003 as a start-up of CNR/INFM with minro industrial participation from ASG
Superconductors aiming at the development of MgB₂ products

In January 2001 superconductivity at 40K in MgB₂ was unexpectedly announced

I invested about 200 € from my own pocket to buy 100 grams of MgB₂ powders online from Alfa-Aesar the night after the day I knew..

Does it make any sense to develop wires looking at the basic MgB₂ properties?

	Composition	MgB ₂
High enough for 20K operation ————————————————————————————————————	Critical temperature	39 K
High enough to reduce weak links	Coherence length	5 nm
Nanoparticles are propedeutic for high j _c (B)>	Penetration depth	120 nm
High enough to produce useful fields	Upper critical field	15 – 60 T

Basic parameters are interesting enough to try making wires with an easily scalable process.. but properties are **NOT** exceeding LTS at 4.2 K nor HTS at 10 K+

Is there a real good reason to develop MgB₂ then?

The LTS lesson tells that 1.Cost / 2.Strength / 3.Performance often counts in this ranking when the selection of a superconducting wire is made (NbTi market share typically overwhelms Nb₃Sn)

While HTS may allow for some applications at LN₂ temperature, in most of the cases they are forced to operation in the 20-50 K range because of the **insufficient behavior in a magnetic field** -> the comparison between HTS and MgB₂ can be mostly done on a **similar cooling penalty basis** than LTS 1.Cost / 2.Strength / 3.Performance

Applications demand

• Making **ONE** single good superconducting product **that fits all** is a formidable interdisciplinary problem possibly with no solution

MgB₂ Production into Wires

of MgB₂ wires

method

Columbus plant in Genoa

Has its own production facilities in Genoa with leading capability to produce and supply MgB₂ wires on a commercial basis since three years mostly used for MRI so far

The present plant is fully operational for MgB₂ wire production with a throughput of 2 Km/day, and is under scaling up to 3'000 Km/year according to our new market forecast with an investment > 5M€

Wire unit length today up to 4 Km in a single piece, easily scalable by increasing billet size/length

Total plant area 3'400 m² – 60% of it in use today, to be increased by further 1'000 m² becoming available by end of 2011

Production for MRI so far exceeded 700 Km of fully tested wires

MgB₂ compound production now also fully implemented Increased interest from developing power applications

Chemical phase Metallurgical phase Manufacturing B Mg by simple ex-situ Powder-In-Tube reaction at 900°C in Ar MgB

More flexibility on wire design than HTS

Ex-situ PIT process

Will MgB₂ become soon a material for production of very high magnetic fields?

- Initial results of very high H_c² were really promising
- Best results easily achieved in thin films though
- Grain boundary pinning, nanoprecipitates flux pinning, structural disorder and lowtemperature synthesis are the combined reasons to achieve best results

Requirements for applications

	Required current density	Operating temperature	Operating field	Required Cost
NMR (outer coil)	104 - 105 A/cm2	4.2 K	5 – 10 T	< 5 €/kA m
MRI solenoid	104 - 105 A/cm2	20 K	1-6 T	< 5 €/kA m
Transformers	> 104 A/cm2	20 K	1 – 2 T	< 15 €/kA m
Generators/motors	> 10 ⁴ A/cm ²	20 K	2 – 4 T	< 5 €/kA m

Cost vs. performance targeted figures

There might be some room for 10-12 Tesla magnets if mechanical properties exceed Nb₃Sn ones appreciably

Real potential is for cryogenic-free magnets up to 3-6 Tesla – enough for MRI and perhaps SMES energy storage

Critical current density larger than 100 A/mm² at fields >> 10T already demonstrated Significant results achieved at 20K as well, while optimal properties in high magnetic field have been achieved at 12 K

High field performance demonstrated in MgB₂ R&D wires by many groups Much more progress yet to come

Even MgB₂ as HTS may need some degree of texturing to achieve maximum performance i.e. j_c > 100'000 A/mm²

Connectivity as low as **5%** as extracted from Rowell analysis of electrical resistivity cannot explain systematically **low** \mathbf{j}_c values in the **best bulk and wire** materials - lack of texture reduces superconducting coupling capability because of the 2-band nature of superconductivity in MgB₂

An **improvement** by at least an **order of magnitude** is still feasible by focusing on microstructure optimization

Looking at the various wire architectures possible

- Significant flexibility in wire architecture due to chemical compatibility with most ductile metals (Nickel, Iron, Titanium, etc.)
- No necessity for texture allows for any wire shape
- Different wire designs can be produced according to customers request (low AC-losses, high filaments count, wire-in-channel, etc.)

Sandwich conductor is becoming our best proposal for a magnet wire – f.f. of 30%, adjustable Copper fraction, lower cost, higher overall j_e , easier than WIC for MgB₂

Driving forces for MgB₂

• Low cost and wide availability of the raw materials, particularly in Europe Performance Low cost B,T • Excellent chemical and mechanical compatibility with various elements (Ni, Fe, Ti, Nb, Ta, Cr, although not with Cu) Potential for very good performance at high fields (thin MgB2 MgB2 Limited films show $H_{c2} > 60$ T!) supercon joints, investment Low AC losses, for end-users • Low anisotropy and potential for persistent mode operation High n-factor, to test it on High filaments count their products (high n-value, low current decay at medium magnetic fields) Handling

Is the MgB₂ wire technology already available? Very active MgB₂ device development is ongoing

Texas Center for Superconductivity 1 Tesla cryogenic-free solenoid magnet

Brookhaven National Laboratory Cryogenic-free pancake magnet

INFN-Genova 2.35 Tesla dipole magnet for particle physics

Ansaldo Breda CRIS 1 Tesla cryogenic-free solenoid magnet

ASG Superconductors Open-Sky MRI

Some of the devices recently realized employing W&R Columbus MgB₂ wires

CERN MgB₂ cable with Ic>17 kA, 6 mm in diameter Scaled up to 125 kA on a 62 mm cable

Cesi Ricerca

Chinese Academy of Science 1.5 Tesla cryogenicfree solenoid magnet

The MRI system "MR Open"

Main Magnet Parameters		
Nominal Field	0.5 T	
Peak Field on the Conductor	1.3 T	
Nominal Magnet Current	90 A	
Conductor critical current at 20K, 1T	400 A	
Conductor critical current at 20K, 0.5 T	1'000 A	
Conductor cost/performance ratio at 20K 1 Tesla today	6.8 €/kA·m	
Conductor cost/performance ratio at 20K 0.5 Tesla today	2.7 €/kA·m	
Number of Pancakes	12	
Conductor Length (total)	18 Km	
Inductance	60 H	
Overall Dimensions	2x2x2.4 m	
Patient Available Gap	0.6 m	
Weight	25000 Kg	

MRopen

PARAMED

First commercial systems installed in hospital in EU and North America

>10 magnet systems produced so far – 6 more systems will be shipped to customers worldwide by end of the year

DC Induction Heater development

Assembly of MgB₂ DC induction heater

Objectives of the project are:

•to dramatically reduce energy consumption and life-cycle costs in one of the large-scale electrotechnical components with poorest energy efficiency and at the same time improve the production quality

•To **validate** the technical and economical **feasibility** of the new concept by building a 200-300 kW aluminium billet induction heater and test it in an industrial aluminium extrusion plant

•The magnet uses about 20 Km of MgB₂ wires, and it has been successfully tested at design specs (200A, about 2 Tesla)

The IGNITOR nuclear fusion project

To be installed in Russia within a close partnership with Italy

This Tokamak is very compact (about 6 m diameter), and basically consists of resistive Copper coils cooled to cryogenic temperatures, due to the extremely high magnetic field (>> 20 Tesla), and operated in quasi-pulsed mode.

The helium gas cooling technology compatible with the use of ${\rm MgB}_{\rm 2}$

The outer poloidal field coils experience a field which is compatible with today's MgB₂

Ignitor – nuclear fusion project

30K He gas cooled copper conductors are currently expected to be used in this machine – MgB₂ coils will be cooled down to 12 K

MgB₂ cable for outer poloidal field coils

J _{cs} of a single MgB ₂ strand @ 4T, 15K	1000 A/mm ²	
Possible filling factor	20%	
Single Strand diameter	1mm	
Total cross section	0.784mm ²	
SC cross section in a single strand	0.784*0.2= 0.15 mm ²	
I _c of a single MgB ₂ strand @ 4T, 15K	0.15*1000= 152 A	
Number of strand to have 35kA	35000A/152A=230	
Total amount of wire	> 500 Km per coil	

Main Ignitor system parameters

Parameters	Symbol	Value	Unit
Major Radius	R ₀	1.32	m
Minor radius	a,b	0.47, 0.86	m
Aspect ratio	А	2.8	
Elongation	k	1.83	
Triangularity	d	0.4	
Toroidal magnetic field	B _T	13	т
Toroidal current	I _p	11	MA
Maximum poloidal field	B _{p,max}	6.5	Т
Mean poloidal field		3.44	т
Poloidal current	l _q	9	MA
Edge safety factor (@11MA)	q _y	3.6	
Confinement strenght		38	MA T
Plasma Surface	S ₀	34	m²
Plasma Volume	V ₀	10	m³
ICRF heating (140 MHZ)	P _{RF}	6 (*)	MW

Why MgB₂ in this machine?

To prove feasibility of future systems with much higher repetition rate

Racetrack magnet for particle accelerators INFN MARIMBO project

The magnet reached about 2.5 Tesla in cryogenic-free conditions Magnet was R&W with a layer by layer structure

20kV distribution system DC resistive FCL design based on MgB₂

A rectifier bridge and a small inductance are used to operate an antinductive MgB₂ coil in almost DC mode, reducing losses and therefore cryogenic load

University of Bologna development

Conductor manufacturing for cable applications

We are in the advanced development phase of MgB₂ round wires for cable applications

Wires are produced with different outer diameter of 1.1 (1 mm²) and 1.6 mm (2 mm²)

1.6 mm wire	Today	In 3 years time
MgB ₂ filling factor %	23%	35%
Critical current at 20K, 1 T	1'000 A	2'000 A
Critical current at 25K, 0.5 T	1'000 A	2'000 A
Boron purity	95-97%	99%
Boron price	0.1 €/m	0.25 €/m
Other constituents price	0.4 €/m	0.25 €/m
Manpower price	1 €/m	0.5 €/m
Conductor cost at 20K, 1T	1.5 €/kAm	0.5 €/kAm

MgB₂ for cable applications

By using round 1.6 mm strands with 1-2 kA x strand capability, it should be possible to be able to carry very large DC currents by a reasonably compact cable

Unit length for this strand is limited by our billet size, of about 40 Kg today, but R&D to go up to 90 Kg is currently ongoing, and a further step to 300 Kg has been already planned

Conclusions..

- We expect a bright future for MgB₂ being a reasonable compromise between pro/cons of LTS and HTS
- Having a commercial MRI product now selling with 18 Km of conductor x system and under operation from as long as 5 years flawlessy is a prof that the technology is consistent
- The relatively limited effort worldwide on MgB₂ has somewhat slowed down the conductor development in recent times - that should become again faster if we manage to attract more support and understanding of the potential of the material
- I am not a rich person yet.. but I will definitely update you in ten years