China's Emerging Hydrogen Economy: Policies, Institutions and Actors

zero emission

Hydrogen H₂

© Shutterstock/ Alexander Kirch Xiaohan Gong & Rainer Quitzow KAS-CUHK-IASS Webinar on "China in the Emerging Hydrogen Economy" December 12th, 2022

Project: Geopolitics of the Energy Transformation: Implications of an International Hydrogen Economy

- Topic 1: Comparative Politics and Governance of Hydrogen in the EU and Other Major Economies
- Topic 2: Hydrogen Diplomacy in Africa: Dynamics of Cooperation and Competition
- Funding

Federal Foreign Office

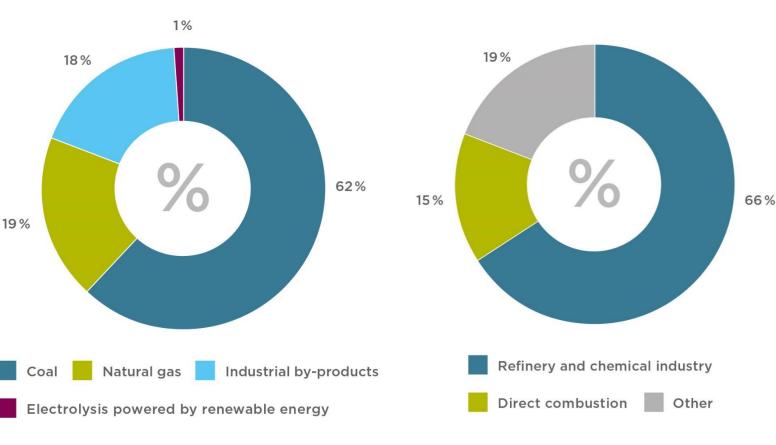
dena

Study: China's Emerging Hydrogen Economy: Policies, Institutions, Actors

Aim of the study

- Provide a detailed overview of the state of play of China's emerging hydrogen economy
 - Focus on policy, institutions and key actors (including role of SOEs)
 - Including central-level as well as relevant sub-national policy action
- Identify key features of China's approach to the hydrogen sector and its (potential) implications for the global hydrogen economy

- 1. The State of China's Hydrogen Economy
- 2. China's Institutional Landscape Governing Hydrogen
- 3. Hydrogen-related Policy Objectives
- 4. Support Policies for Hydrogen Development
- **5. Discussion and Conclusions**



The State of China's Hydrogen Economy

Production and Consumption of Hydrogen in China

- China is currently the largest hydrogen producer worldwide.
- However, only 1 percent of hydrogen was produced from renewable energy in 2020.
- Hydrogen consumption was dominated by the refinery and chemical industry in 2020.

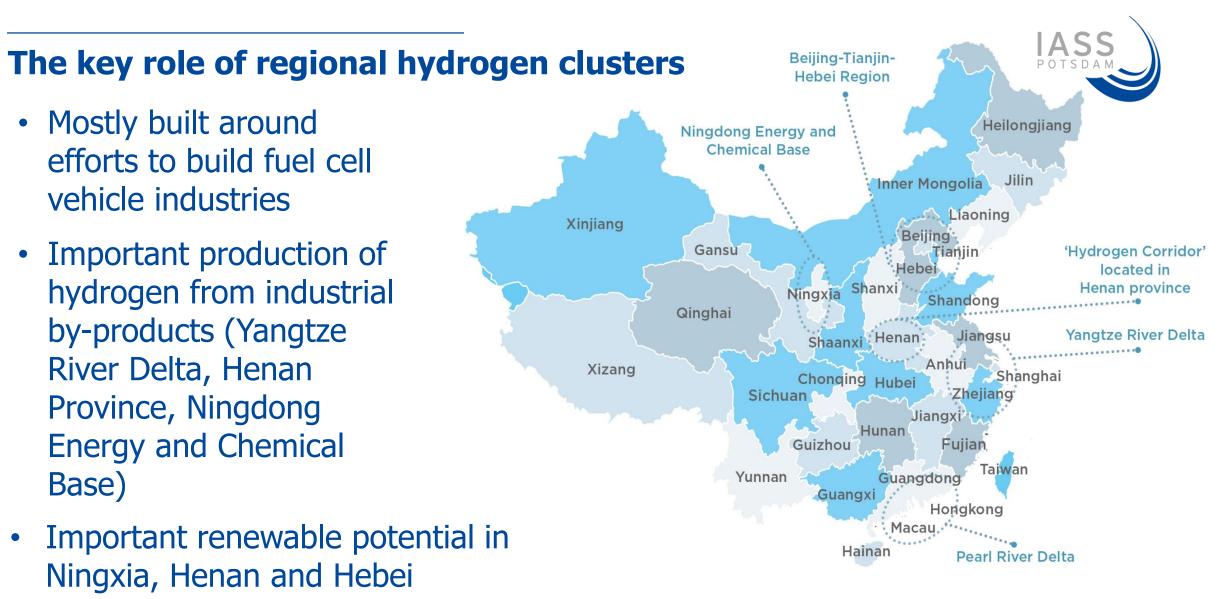
Source: Hydrogen Industrial Reports published by Leadleo Industry Research Institute and AskCl Consulting in 2021

China's hydrogen production in 2020

China's hydrogen consumption in 2020

Source: Haitong Securities, 'Hydrogen Energy: Challenges

and Opportunities', 2021



Hydrogen transport and storage infrastructure: The key role of energy SOEs

- CNPC: Dingzhou-Gaobeidian pipeline
- Sinopec: Baling-Changling hydrogen pipeline
- PipeChina has set up a subsidiary focusing on infrastructure construction in 2020

Source: BJX Hydrogen Energy, 'The Layout of Hydrogen Pipelines in China', 2022

Source: Authors' own

provinces

Hydrogen-related Policy Objectives

Hydrogen as a vehicle for CO₂ reduction

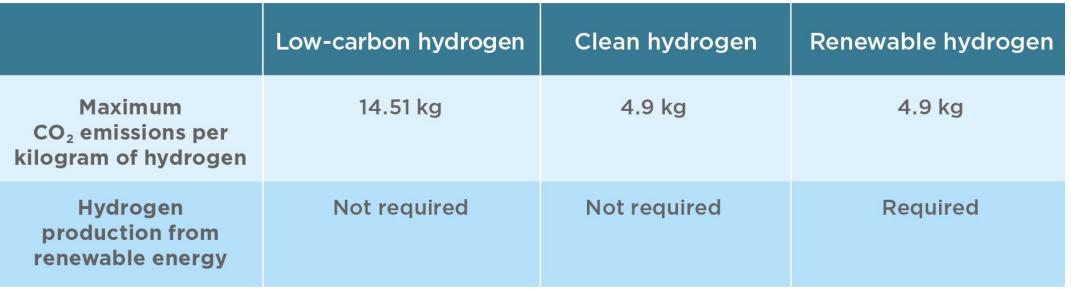
Key targets

- Renewable hydrogen: 100,000 to 200,000 tons of renewable hydrogen per year by 2025 and thereby reduce 1 to 2 million tons of CO₂
 - □ Selected local governments have more ambitious targets
- Transport: 50,000 fuel cell vehicles by 2025, expansion of refueling stations
- **Power system:** Hydrogen-based storage for balancing renewables
- □ **Industry**: Gradually decarbonize the steel and chemical industry
- The Mid-and-Long-Term Hydrogen Industrial Development Plan (2021-2035) (2022)
- The Implementation Plan of Carbon Peaking of Industry (2022)

Hydrogen's Potential for Innovation and Industrial Development

□ Improve the efficiency of hydrogen production from renewable energy but also fossil fuels, including coal gasification.

- □ Scale-up production of electrolyzers and reduce costs
- □ Advance know-how in materials for hydrogen storage and refueling
- □ Promote R&D and manufacturing of fuel cells
- Pilot cities to promote industrial clusters for the production and use of fuel cell vehicles
- The Mid-and-Long-Term Hydrogen Industrial Development Plan (2021-2035) (2022)
- The 14th Five-Year Plan of Energy Technology Innovation (2022)


Fuel cell vehicles and refueling stations: The importance of local-level targets

		U					
	Industrial Clusters	Provinces/Cities	Target for building hydrogen refueling stations (by 2025)	Industrial Clusters	Cities	Target volume for hydrogen fuel cell vehicle (by 2025)	
	Yangtze River Delta	Changshu	4	Yangtze River Delta	Ningbo	600-800 (by 2022)	
	Ningbo	10 - 15		Jiaxing	1,500		
		Jiaxing	20		Shanghai	More than 10,000	
		Shanghai	70	Beijing-Tianjin-Hebei	Beijing	More than 10,000	
	Beijing-Tianjin-Hebei	Beijing	37	Region	Hebei province	10,000	
	Region	Hebei province	50	Hydrogen Corridor in	Henan Province	More than 5,000	
	Pearl River Delta	Foshan	30	Henan province			
		Guangzhou	>50	Pearl River Delta	Foshan	30,000	
		Shenzhen	10		Maoming	600	
		Maoming	>10				
	Hydrogen Corridor in Henan province	Henan province	>80				
	Ningdong Energy and Chemical Base	Ningxia province	1-2	Source: Hydrogen Development Plans issued by respective local governments			

cles

Standards for Renewable, Clean and Low-Carbon Hydrogen

Source: China Hydrogen Alliance, Standard and Evaluation of Low-carbon Hydrogen, Clean Hydrogen and Renewable Hydrogen, 2020

- Standards issued by China Hydrogen Alliance, not yet endorsed or used by government
- Low-carbon hydrogen more carbon-intensive than natural gas-based hydrogen (around 9 kg CO₂/kg H₂ production).
- National hydrogen development plan does not discuss carbon capture and storage for use in hydrogen production.

Support Policies for Hydrogen Development

Fuel Cell Vehicles as Major Policy Priority: Support from the Central Budget

 Incentives for manufacturers of fuel cell vehicles via the New Energy Vehicles credit system (system of fleet-based emissions standards)

Direct consumer subsidies

Types of fuel cell vehicles	Subsidies to each vehicle in 2016 (CNY)	Reduction in 2017 (base year: 2016)	Reduction in 2019 (base year: 2016)	Reduction in 2021 (base year 2019)	Reduction in 2022 (base year: 2021)
Passenger vehicles	20,000	20 %	40 %	20%	30 %
Light vehicles	30,000			(private use)	(private use)
Heavy/ medium-size bus or vans	50,000			10 % (public use)	20 % (public use)

Source: MOF, MOST, MIIT and NDRC, Notice of the Fiscal Subsidy Policies for the Promotion and Application of New Energy Vehicles (2016-2020) (2015); MOF, MIIT, MOST and NDRC, Notice of Further Improving the Fiscal Subsidy Policies for the Promotion and Application of New Energy Vehicles (2020); MOF, MIIT, MOST and NDRC, Notice of the Policies on Fiscal Subsidies for Promotion and Application of New Energy Vehicles in 2022 (2021)

Fuel Cell Vehicles as Major Policy Priority: Pilot Cities

- Gradually replacing the subsidy regime since 2020
- Central government provides rewards for pilot cities for promotion of fuel cell industry
- Selected cities in 2021: Beijing, Shanghai, Guangzhou, Zibo in Shandong province

Support mechanisms for hydrogen refueling stations: Pilot cities

- Rewards to pilot cities or city clusters to promote the R&D of hydrogen refueling stations since 2014
- Subsidies granted by local governments to the construction and/or operation of hydrogen refueling stations

Notes: Unless otherwise stated, these subsidy rates are effective in 2022.

	Industrial Clusters	City	Subsidies to companies		
	Yangtze River Delta	Jiaxing, Zhejiang province	20 yuan/kg (around US\$ 3.13/kg) for operation		
	River Della		Annual decrease of 5 yuan/kg (around US\$ 0.78)		
	Beijing-Tianjin- Hebei Region	Tianjin, centrally- administered city	 Up to 5 million yuan (around US\$ 783,712) for construction 		
		Zhangjiakou, Hebei province	 Up to 8 million yuan (around US\$ 1.25 million) for construction 		
	Pearl River Delta	Foshan, Guangdong province	 Up to 5 million yuan (around US\$ 783,712) for construction 		
		Guangzhou, Guangdong province	 Up to 2.5 million yuan (around US\$ 391,856) for operation 		
	Hydrogen Corridor in Henan Province	Puyang, Henan province	 Up to 10 million yuan (around US\$ 1,500,000) for construction 		
			 2022-2023: 15 yuan/kg (around US\$ 2.14/kg) for operation 		
			 2024 - 2025: 10 yuan/kg (around US\$ 1.43/kg) for operation 		
	Others	Chengdu, Sichuan province	 Up to 5 million yuan (around US\$ 783,712) for construction 		
			20 yuan/kg (around US\$ 3.13/kg) for operation		
	Source: Hydrogen Development Plans issued by local governments				

Other Support Mechanisms for Hydrogen Development

- clean hydrogen production
- fuel cells
- fuel cell vehicles
- refueling stations
- storage
- hydrogen blending in pipelines

- Support mechanisms include:
 - Local industrial funds
 - Preferential tax treatment
 - Discounted electricity prices
- China's <u>emission trading</u>
 <u>system</u> could provide incentives in the future if expanded to transport and relevant industrial sectors.

- The Green Industry Guidance (2019)
- The Notice of Issuing the Catalogue of Projects Supported by Green Bonds (2021)

Synthesis & Conclusions: H₂ policy priorities

Hydrogen policy is dominated by considerations of innovation and industrial development.

- Obtaining capabilities in "key technologies" and equipment for their industrial production is an important concern.
- Fuel cell vehicles remain the most prominent target sector.
- China is promoting demand for hydrogen, although this effort mainly lies in the transport sector (i.e. fuel cell vehicles).
- Other dimensions of hydrogen are gradually emerging as priorities, in particular hydrogen production and transport.

Synthesis & Conclusions: H₂ governance

Local clusters are driving the development of H2 value chains, while energy SOEs are building on their assets to develop H2 infrastructure.

- Local clusters and pilot cities are crucial for hydrogen development at this stage.
- Local targets frequently surpass central targets, both for deployment of fuel cell vehicles and for renewable hydrogen.
- Rewards for pilot cities are starting to replace direct consumer subsidies for fuel cell vehicles.
- SOEs are key players for developing transport (e.g. pipelines) and storage infrastructure (e.g. refueling stations).

Synthesis & Conclusions: H₂ and decarbonization

At present the role of hydrogen as a vehicle for decarbonization remains an uncertain prospect.

- Hydrogen is seen as a vehicle for decarbonization and stabilization of an electricity system based on renewables <u>in the long term</u>.
- In the short term, hydrogen production from any source is being supported.
- Standards for <u>low-carbon hydrogen</u> relate to <u>coal-based</u> hydrogen.
- Priority is not necessarily given to hydrogen use in the hardestto-electrify sectors (e.g. industry) but in transport.
- It remains <u>unclear how demand for *renewable or clean* hydrogen</u> will be supported.

Synthesis & Conclusions: International H₂ **implications**

Focus on geoeconomics / technology leadership.

- China does not appear to be positioning itself as a large-scale importer or exporter of (renewable) hydrogen, favoring **domestic hydrogen production**.
- Potential energy security benefits of hydrogen do not figure prominently in China's hydrogen policy.
- While China's standard for "clean hydrogen" seems to align with the EU CertifHy approach, standards for "low-carbon" and "renewable" hydrogen are likely to be less stringent than EU equivalents in the short term.
- China is prioritizing competition in fuel cell technologies, while deploying efforts to close gaps in clearly defined technologies.
- Electrolyzers technologies and fuel cell vehicles offer potential for BRI.

Contact

Xiaohan Gong

gongxiaohan@link.cuhk.edu.hk

Rainer Quitzow

Rainer.Quitzow@iass-potsdam.de

Institute for Advanced Sustainability Studies e.V. Berliner Straße 130 D – 14467 Potsdam Web: <u>www.iass-potsdam.de</u>

